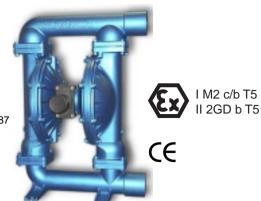
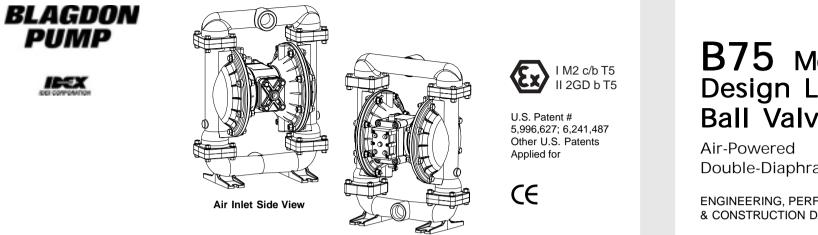
SERVICE & OPERATING MANUAL


BLAGDON PUMP®

Model B75 Metallic Design Level 1

Table of Contents

Engineering Data and Temperature Limitations1
Performance Curve
Dimensions
Principle of Pump Operation4
Installation and Start-Up4
Air Supply4
Air Valve Lubrication
Air Line Moisture4
Air Inlet and Priming4
Between Uses4
Installation Guide
Troubleshooting
Warranty6
Recycling7
Important Safety Information7
Material Codes8
Composite Repair Parts Drawing10
Available Service and Conversion Kits10
Composite Repair Parts List11
**Air Distribution Valve Assembly Drawing and Parts List12
Air Distribution Valve Servicing13
**Air Distribution Valve w/Stroke Indicator Assembly Drawing and Parts List $\ldots 14$
**Air Distribution Valve w/Stroke Indicator Servicing15


U.S. Patent # 5,996,627; 6,241,487 Other U.S. Patents Applied for

**Solenoid Shifted Air Valve Drawing	16
**Solenoid Shifted Air Valve Parts List	16
**Solenoid Shifted Air Distribution Valve Option	17
Diaphragm Service Drawing, with Overlay	18
Diaphragm Service Drawing, Non-Overlay	18
Diaphragm Servicing	19
Overlay Diaphragm Servicing	19
Actuator Plunger Servicing	20
Check Valve Servicing	21
Check Valve Drawing	21
Optional Muffler Configurations	22
Optional Muffler Configuration Drawing	22
Pumping Hazardous Liquids	23
Converting Pump for Piping Exhaust Air	23
Converted Exhaust Illustration	23
**RuppTech® Leak Detection Options & Drawing	24
**RuppTech® Electronic Leak Detector Installation	24
**RuppTech® Mechanical Leak Detector Installation	24
**RuppTech® Pulse Output Kit Drawing	25
**RuppTech® Pulse Output Kit Options	25
Grounding the Pump	26

**Note: Not ATEX Compliant

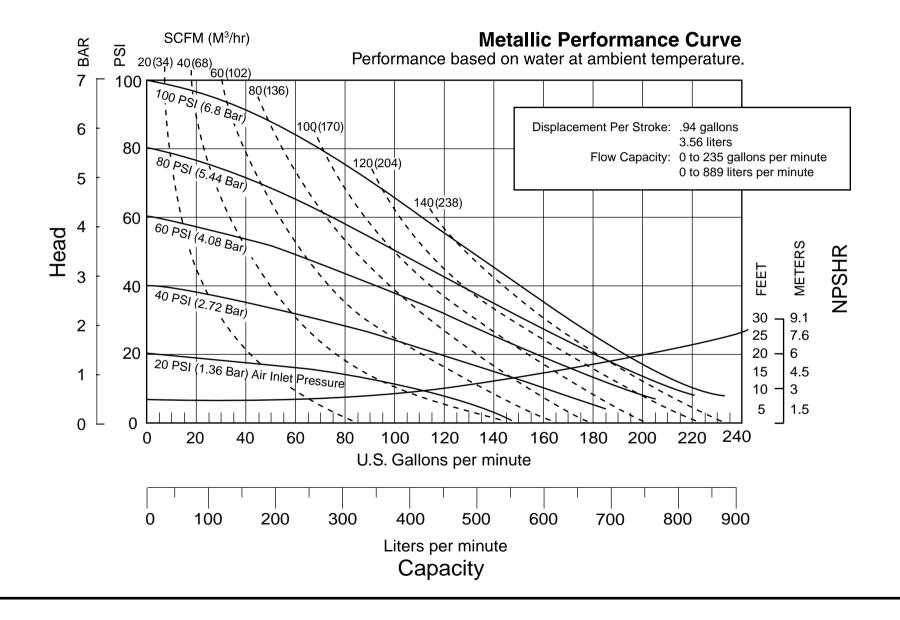
Blagdon Pump • Lambert Road, Armstrong, Washington Tyne & Wear NE37 1QP ENGLAND • Tel: (0191) 4177475 Fax: (0191) 4175435 • www.blagdonpump.com

Air Exhaust Side View

B75	Metallic
Design	Level 1
Ball Va	lve

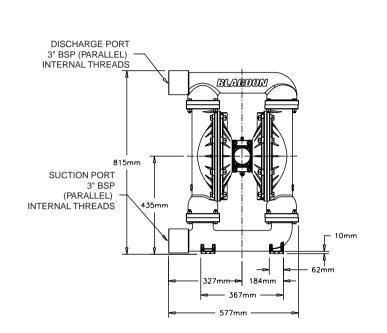
Double-Diaphragm Pump

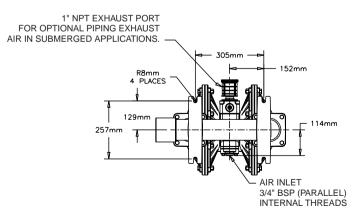
ENGINEERING, PERFORMANCE & CONSTRUCTION DATA

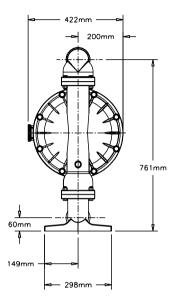

INTAKE/DISCHARGE PIPE SIZE 3" NPT(internal) / 3" ANSI Flange 3" BSPT Tapered (internal)	CAPACITY 0 to 235 gallons per minute (0 to 889 liters per minute)	AIR VALVE No-lube, no-stall design		LIDS-HANDLING Jp to .25 in. (6mm)	HEADS UP TO 125 psi or 289 ft. of water (8.6 Kg/cm ² or 86 meters)	DISPLACEMENT/STROKE .94 Gallon / 3.56 liter
A CAUTION! Operation Materials	ng temperature limitations	are as follows:		Maximum*	Operating Temperatures Minimum*	Optimum**
Buna General purpose, oil-resistant. Shows good solvent, oil, water and hydraulic fluid resistance. Should not be used with highly polar solvents like acetone and MEK, ozone, chlorinated hydrocarbons and nitro hyrdrocarbons.				190°F 88°C	-10°F -23°C	50° to 140°F 10°C to 60°C
EPDM Shows very good water a but is fair in ketones and alcohol	and chemical resistance. Has poor re Is.	sistance to oil and solvents,		212°F 100°C	-10°F -23°C	50° to 212°F 10°C to 100°C
Neoprene All purpose. Resistant to vegetable oil. Generally not affected by moderate chemicals, fats, greases and many oils and solvents. Generally attacked by strong oxidizing acids, ketones, esters, nitro hydrocarbons and chlorinated aromatic hydrocarbons.				170°F 77°C	-10°F -23°C	50° to 130°F 10°C to 54°C
Santoprene [®] Injection molded thermoplastic elastomer with no fabric layer. Long mechanical flex life. Excellent abrasion resistance.				212°F 100°C	-10°F -23°C	50° to 212°F 10°C to 100°C
Virgin PTFE Chemically inert, virtually impervious. Very few chemicals are known to react chemically with PTFE: molten alkali metals, turbulent liquid or gaseous fluorine and a few fluoro-chemicals such as chlorine trifluoride or oxygen difluoride which readily liberate free fluorine at elevated temperatures.			th	212°F 100°C	-35°F -37°C	50°F to 212°F 10°C to 100°C
Viton [®] Shows good resistance to a wide range of oils and solvents; especially all aliphatic, aromatic and halogenated hydrocarbons, acids, animal and vegetable oils. Hot water or hot aqueous solutions (over 70°F) will attack Viton.				212°F 100°C	+32°F 0°C	75°F to 212°F 24°C to 100°C
Polypropylene				150°F 65°C	-40°F -40°C	

For specific applications, always consult "Chemical Resistance Chart" Technical Bulletin

The pumps are designed to be powered only by compressed air.


*Definite reduction in service life. **Minimal reduction in service life at ends of range.


Performance Curve



Dimensions:

Dimensions in Inches Dimensional Tolerance:±¹/₈"

PRINCIPLE OF PUMP OPERATION

This ball type check valve pump is powered by compressed air and is a 1:1 ratio design. The inner side of one diaphragm chamber is alternately pressurized while simultaneously exhausting the other inner chamber. This causes the diaphragms, which are connected by a common rod secured by plates to the centers of the diaphragms, to move in a reciprocating action. (As one diaphragm performs the discharge stroke the other diaphragm is pulled to perform the suction stroke in the opposite chamber.) Air pressure is applied over the entire inner surface of the diaphragm while liquid is discharged from the opposite side of the diaphragm. The diaphragm operates in a balanced condition during the discharge stroke which allows the pump to be operated at discharge heads over 200 feet (61 meters) of water.

For maximum diaphragm life, keep the pump as close to the liquid being pumped as possible. Positive suction head in excess of 10 feet of liquid (3.048 meters) may require a back pressure regulating device to maximize diaphragm life.

Alternate pressurizing and exhausting of the diaphragm chamber is performed by an externally mounted, pilot operated, four way spool type air distribution valve. When the spool shifts to one end of the valve body, inlet pressure is applied to one diaphragm chamber and the other diaphragm chamber exhausts. When the spool shifts to the opposite end of the valve body, the pressure to the chambers is reversed. The air distribution valve spool is moved by a internal pilot valve which alternately pressurizes one end of the air distribution valve spool while exhausting the other end. The pilot valve is shifted at each end of the diaphragm stroke when a actuator plunger is contacted by the diaphragm plate. This actuator plunger then pushes the end of the pilot valve spool into position to activate the air distribution valve.

The chambers are connected with manifolds with a suction and discharge check valve for each chamber, maintaining flow in one direction through the pump.

INSTALLATION AND START-UP

Locate the pump as close to the product being pumped as possible. Keep the suction line length and number of fittings to a minimum. Do not reduce the suction line diameter.

For installations of rigid piping, short sections of flexible hose should be installed between the pump and the piping. The flexible hose reduces vibration and strain to the pumping system. A surge suppressor is recommended to further reduce pulsation in flow.

AIR SUPPLY

Air supply pressure cannot exceed 125 psi (8.6 bar). Connect the pump air inlet to an air supply of sufficient capacity and pressure required for desired performance. When the air supply line is solid piping, use a short length of flexible hose not less than 1/2" (13mm) in diameter between the pump and the piping to reduce strain to the piping. The weight of the air supply line, regulators and filters must be supported by some means other than the air inlet cap. Failure to provide support for the piping may result in damage to the pump. A pressure regulating valve should be installed to insure air supply pressure does not exceed recommended limits.

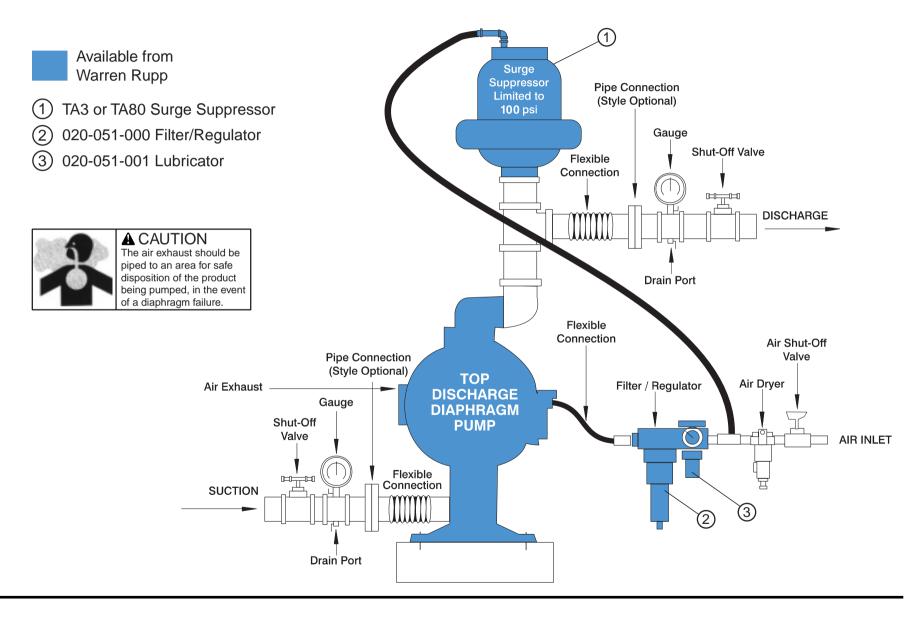
AIR VALVE LUBRICATION

The air distribution valve and the pilot valve are designed to operate WITHOUT lubrication. This is the preferred mode of operation. There may be instances of personal preference or poor quality air supplies when lubrication of the compressed air supply is required. The pump air system will operate with properly lubricated compressed air supply. Proper lubrication requires the use of an air line lubricator (available from Warren Rupp) set to deliver one drop of SAE 10 non-detergent oil for every 20 SCFM (9.4 liters/sec.) of air the pump consumes at the point of operation. Consult the pump's published Performance Curve to determine this.

AIR LINE MOISTURE

Water in the compressed air supply can create problems such as icing or freezing of the exhaust air, causing the pump to cycle erratically or stop operating. Water in the air supply can be reduced by using a point-of-use air dryer to supplement the user's air drying equipment. This device removes water from the compressed air supply and alleviates the icing or freezing problems.

AIR INLET AND PRIMING


To start the pump, open the air valve approximately 1/2" to 3/4" turn. After the pump primes, the air valve can be opened to increase air flow as desired. If opening the valve increases cycling rate, but does not increase the rate of flow, cavitation has occurred. The valve should be closed slightly to obtain the most efficient air flow to pump flow ratio.

BETWEEN USES

When the pump is used for materials that tend to settle out or solidify when not in motion, the pump should be flushed after each use to prevent damage. (Product remaining in the pump between uses could dry out or settle out. This could cause problems with the diaphragms and check valves at restart.) In freezing temperatures the pump must be completely drained between uses in all cases.

INSTALLATION GUIDE Top Discharge Ball Valve Unit

TROUBLESHOOTING Possible Symptoms:

- Pump will not cycle.
- Pump cycles, but produces no flow.
- Pump cycles, but flow rate is unsatisfactory.
- Pump cycle seems unbalanced.
- Pump cycle seems to produce excessive vibration.

<u>What to Check:</u> Excessive suction lift in system.

Corrective Action: For lifts exceeding 20 feet (6 meters), filling the pumping chambers with liquid will prime the pump in most cases.

What to Check: Excessive flooded suction in system.

<u>Corrective Action:</u> For flooded conditions exceeding 10 feet (3 meters) of liquid, install a back pressure device.

What to Check: System head exceeds air supply pressure.

<u>Corrective Action</u>: Increase the inlet air pressure to the pump. Most diaphragm pumps are designed for 1:1 pressure ratio at zero flow.

What to Check: Air supply pressure or volume exceeds system head. Corrective Action: Decrease inlet air pressure and volume to the pump as calculated on the published PERFORMANCE CURVE. Pump is cavitating the fluid by fast cycling. <u>What to Check:</u> Undersized suction line. <u>Corrective Action</u>: Meet or exceed pump connection recommendations shown on the DIMENSIONAL DRAWING.

<u>What to Check:</u> Restricted or undersized air line.

Corrective Action: Install a larger air line and connection. Refer to air inlet recommendations shown in your pump's SERVICE MANUAL.

What to Check: Check ESADS, the Externally Serviceable Air Distribution System of the pump.

Corrective Action: Disassemble and inspect the main air distribution valve, pilot valve and pilot valve actuators. Refer to the parts drawing and air valve section of the SERVICE MANUAL. Check for clogged discharge or closed valve before reassembly.

What to Check: Rigid pipe connections to pump.

<u>Corrective Action</u>: Install flexible connectors and a Warren Rupp Tranquilizer® surge suppressor.

What to Check: Blocked air exhaust muffler.

Corrective Action: Remove muffler screen, clean or de-ice and reinstall. Refer to the Air Exhaust section of your pump SERVICE MANUAL.

<u>What to Check:</u> Pumped fluid in air exhaust muffler.

Corrective Action: Disassemble pump chambers. Inspect for diaphragm rupture or loose diaphragm plate assembly. Refer to the Diaphragm Replacement section of your pump SERVICE MANUAL.

What to Check: Suction side air leakage or air in product.

<u>Corrective Action:</u> Visually inspect all suction side gaskets and pipe connections.

What to Check: Obstructed check valve.

Corrective Action: Disassemble the wet end of the pump and manually dislodge obstruction in the check valve pocket. Refer to the Check Valve section of the pump SERVICE MANUAL for disassembly instructions.

What to Check: Worn or misaligned check valve or check valve seat. Corrective Action: Inspect check valves and seats for wear and proper seating. Replace if necessary. Refer to Check Valve section of the pump SERVICE MANUAL for disassembly instructions.

What to Check: Blocked suction line. Corrective Action: Remove or flush obstruction. Check and clear all suction screens and strainers. <u>What to Check:</u> Blocked discharge line. <u>Corrective Action:</u> Check for obstruction or closed discharge line valves.

What to Check: Blocked pumping chamber.

Corrective Action: Disassemble and inspect the wetted chambers of the pump. Remove or flush any obstructions. Refer to the pump SERVICE MANUAL for disassembly instructions.

What to Check: Entrained air or vapor lock in one or both pumping chambers. Corrective Action: Purge chambers through tapped chamber vent plugs. PURGING THE CHAMBERS OF AIR CAN BE DANGEROUS! Contact the Technical Services Group before performing this procedure. Any model with top-ported discharge will reduce or eliminate problems with entrained air.

If your pump continues to perform below your expectations, contact your local Distributor or factory Technical Services Group for a service evaluation.

WARRANTY

Refer to the enclosed Warranty Certificate.

RECYCLING

Many components of Metallic AODD pumps are made of recyclable materials (see chart on page 10 for material specifications). We encourage pump users to recycle worn out parts and pumps whenever possible, after any hazardous pumped fluids are thoroughly flushed.

IMPORTANT SAFETY INFORMATION

IMPORTANT

Read these safety warnings and instructions in this manual completely, before installation and start-up of the pump. It is the

responsibility of the purchaser to retain this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

ACAUTION

Before pump operation, inspect all gasketed fasteners for looseness caused by gasket creep. Re-torque loose fasteners

torques stated in this manual.

repair, shut off the compressed air line, bleed the pressure, and disconnect the air line from the pump. The discharge line may be pressurized and must be bled of its pressure.

In the event of diaphragm rupture, pumped material may enter the air end of the pump, and be discharged into the atmosphere. If

pumping a product which is hazardous or toxic, the air exhaust must be piped to an appropriate area for safe disposition.

AWARNING

Take action to prevent static sparking. Fire or explosion can result, especially when handling flammable liquids. The pump, piping, valves,

containers or other miscellaneous equipment must be grounded. (See page 28)

AWARNING

This pump is pressurized internally with air pressure during operation. Always make certain that all bolting is in good condition and that

all of the correct bolting is reinstalled during assembly.

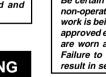
When used for toxic or agaressive fluids, the pump should always be flushed clean prior to disassembly.

Before doing any maintenance on the pump, be certain all pressure is completely vented from the pump, suction, discharge,

piping, and all other openings and connections. Be certain the air supply is locked out or made non-operational, so that it cannot be started while work is being done on the pump. Be certain that approved eye protection and protective clothing are worn all times in the vicinity of the pump. Failure to follow these recommendations may result in serious injury or death.

Airborne particles and loud noise hazards.

Wear ear and eye protection.


CE

Pump complies with EN809 Pumping Directive and Directive 98/37/EC Safety of Machinery, and ATEX 100a Directive 94/9/EC Equipment for use in Potentially Explosive Environments.

to prevent leakage. Follow recommended

MATERIAL CODES

The Last 3 Digits of Part Number

- 000 Assembly, sub-assembly; and some purchased items 010 Cast Iron 012 Powered Metal 015 Ductile Iron 020 Ferritic Malleable Iron 025 Music Wire 080 Carbon Steel, AISI B-1112 100 Alloy 20 110 Alloy Type 316 Stainless Steel 111 Alloy Type 316 Stainless Steel (Electro Polished) 112 Alloy "C" (Hastelloy equivalent) 113 Allov Type 316 Stainless Steel (Hand Polished) 114 303 Stainless Steel 115 302/304 Stainless Steel 117 440-C Stainless Steel (Martensitic) 120 416 Stainless Steel (Wrought Martensitic) 123 410 Stainless Steel (Wrought Martensitic) 148 Hardcoat Anodized Aluminum 149 2024-T4 Aluminum 150 6061-T6 Aluminum 151 6063-T6 Aluminum 152 2024-T4 Aluminum (2023-T351) 154 Almag 35 Aluminum 155 356-T6 Aluminum 156 356-T6 Aluminum 157 Die Cast Aluminum Alloy #380 158 Aluminum Alloy SR-319 159 Anodized Aluminum 162 Brass, Yellow, Screw Machine Stock 165 Cast Bronze, 85-5-5-5 166 Bronze, SAE 660 170 Bronze, Bearing Type, **Oil Impregnated**
- 175 Die Cast Zinc 180 Copper Alloy 305 Carbon Steel. Black Epoxy Coated 306 Carbon Steel. Black PTFE Coated 307 Aluminum. Black Epoxy Coated 308 Stainless Steel, Black PTFE Coated 309 Aluminum, Black PTFE Coated 310 Kvnar® Coated 330 Zinc Plated Steel 331 Chrome Plated Steel 332 Aluminum, Electroless Nickel Plated 333 Carbon Steel. Electroless Nickel Plated 335 Galvanized Steel 336 Zinc Plated Yellow Brass 337 Silver Plated Steel 340 Nickel Plated 342 Filled Nylon 353 Geolast; Color: Black 354 Injection Molded #203-40 Santoprene-Duro 40D +/-5: Color: RED 355 Thermal Plastic 356 Hytrel 357 Injection Molded Polyurethane 358 Urethane Rubber (Some Applications) (Compression Mold) 359 Urethane Rubber 360 Buna-N Rubber. Color coded: RED 361 Buna-N 363 Viton (Flurorel). Color coded: YELLOW 364 E.P.D.M. Rubber. Color coded: BLUE 365 Neoprene Rubber. Color coded: GREEN 366 Food Grade Nitrile 368 Food Grade EPDM 370 Butyl Rubber. Color coded: BROWN
- 371 Philthane (Tuftane)
- 374 Carboxylated Nitrile

375 Eluorinated Nitrile 378 High Density Polypropylene 379 Conductive Nitrile 405 Cellulose Fibre 408 Cork and Neoprene 425 Compressed Fibre 426 Blue Gard 440 Vegetable Fibre 465 Fibre 500 Delrin 500 501 Delrin 570 502 Conductive Acetal. ESD-800 503 Conductive Acetal, Glass-Filled 505 Acrvlic Resin Plastic 506 Delrin 150 520 Injection Molded PVDF Natural color 540 Nylon 541 Nylon 542 Nylon 544 Nylon Injection Molded 550 Polvethylene 551 Glass Filled Polypropylene 552 Unfilled Polypropylene 553 Unfilled Polypropylene 555 Polyvinyl Chloride 556 Black Vinyl 558 Conductive HDPE 570 Rulon II 580 Rvton 590 Valox 591 Nvlatron G-S 592 Nylatron NSB 600 PTFE (virgin material) Tetrafluorocarbon (TFE) 601 PTFE (Bronze and molv filled) 602 Filled PTFE

603 Blue Gvlon

604 PTFE

608 Conductive PTFE
610 PTFE Encapsulated Silicon
611 PTFE Encapsulated Viton
632 Neoprene/Hytrel
633 Viton/PTFE
634 PDM/PTFE
635 Neoprene/PTFE
637 PTFE , Viton/PTFE
638 PTFE , Hytrel/PTFE
639 Buna-N/TFE
643 Santoprene®/EPDM
644 Santoprene Diaphragm and Check Balls/EPDM Seats

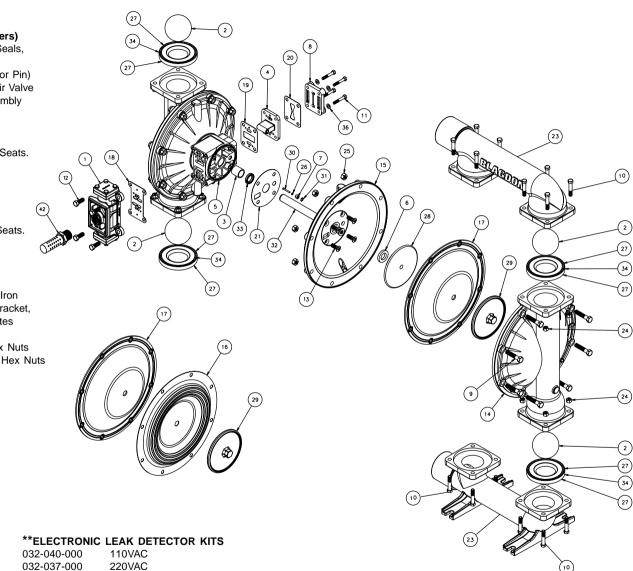
606 PTFE

607 Envelon

Chemicals. Inc.

Delrin. Viton and Hytrel are registered tradenames of E.I. DuPont. Gylon is a registered tradename of Garlock, Inc. Nylatron is a registered tradename of Polymer Corp. Santoprene is a registered tradename of Monsanto Corp. Rulon II is a registered tradename of Dixion Industries Corp. Hastelloy-C is a registered tradename of Cabot Corp. Ryton is a registered tradename of Phillips Chemical Co. Valox is a registered tradename of General Electric Co. Kynar® is a registered tradename of ATOFINA

Composite Repair Parts Drawing

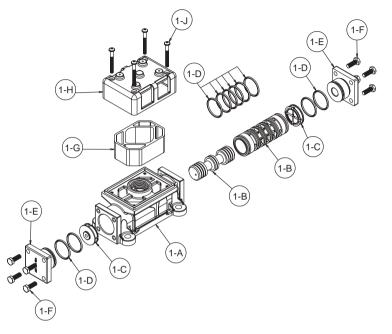

AVAILABLE SERVICE AND CONVERSION KITS

476-227-000	AIR END KIT (Use with Aluminum Centers) Air Valve Assembly, Pilot Valve Assembly, Seals, O-rings, Gaskets, Plungers
**476-170-000	AIR END KIT (Air Valve with Stroke Indicator Pin) Seals, O-ring, Gaskets, Retaining Rings, Air Valve Sleeve and Spool Set, and Pilot Valve Assembly
476-171-360	WET END KIT
	Buna Diaphragms, Balls, and Seats.
476-171-656	WET END KIT
	Santoprene Diaphragms, Balls and EPDM Seats.
476-171-364	WET END KIT
	EPDM Diaphragms, Balls and Seats.
476-171-365	WET END KIT
	Neoprene Diaphragms, Balls, and Seats.
476-171-633	WET END KIT
	Viton Diaphragms, PTFE Balls and PTFE Seats.
476-171-635	WET END KIT
	Neoprene Diaphragms, PTFE Overlay,
	PTFE Balls and PTFE Seats.
475-217-000	MIDSECTION CONVERSION KIT
	(Replaces Aluminum Midsection with Cast Iron
	Components) Air Inlet Cap, Intermediate Bracket,
	Inner Chambers, and Inner Diaphragm Plates
HARDWARE KIT	S

475-197-330	Zinc Plated Capscrews, Washers, and Hex Nuts
475-197-115	Stainless Steel Capscrews, Washers, and Hex Nu

**PULSE OUTPUT KITS

10202 0011	
(For use with 53	0-010-000 mufflers,
or piped exhaust)
475-198-001	DC Kit
475-198-002	DC Intrinsically Safe Kit
475-198-003	110/120VAC or 220/240VAC Kit
475-198-004	110/120VAC Intrinsically Safe Kit
475-198-005	220/240VAC Intrinsically Safe Kit
(For use with en	capsulated 530-028-550 muffler)
475-198-006	DC Kit
475-198-007	DC Intrinsically Safe Kit
475-198-008	110/120VAC or 220/240VAC Kit
475-198-009	110/120VAC Intrinsically Safe Kit
475-198-010	220/240VAC Intrinsically Safe Kit



**Note: Pumps equipped with these components are <u>not</u> ATEX compliant

ITEM	PART NUMBER	DESCRIPTION	QTY	ITEM	PART NUMBER	DESCRIPTION	QTY
1	**031-146-000	Air Valve Assembly	1		518-143-010E	Manifold, Suction 3" BSPT	1
	**031-147-000	Air Valve Assembly	1		518-143-110	Manifold, Suction	1
	**031-173-000	Air Valve Assembly	1		518-143-110E	Manifold, Suction 3" BSPT	1
	031-183-000	Air Valve Assembly	1		518-143-112	Manifold, Suction	1
	031-179-000	Air Valve Assembly (Cast Iron Centers Only)	1		518-143-112E	Manifold, Suction 3' BSPT	1
2	050-014-354	Ball, Check	4	23	518-144-156	Manifold, Discharge	1
	050-014-360	Ball, Check	4		518-144-156E	Manifold, Discharge 3" BSPT	1
	050-014-364	Ball, Check	4		518-144-010	Manifold, Discharge	1
	050-014-365	Ball, Check	4		518-144-010E	Manifold, Discharge 3" BSPT	1
	050-015-600	Ball, Check	4		518-144-110	Manifold, Discharge	1
3	070-006-170	Bushing	2		518-144-110E	Manifold, Discharge 3" BSPT	1
4	095-110-558	Pilot Valve Assembly	1		518-144-112	Manifold, Discharge	1
	095-110-110	Pilot Valve Assembly (Cast Iron Centers Only)	1		518-144-112E	Manifold, Discharge 3" BSPT	1
5	114-024-157	Intermediate Bracket	1	24	545-007-115	Nut, Hex 7/16-14	16
	114-024-010	Intermediate Bracket	1		545-007-330	Nut, Hex 7/16-14	16
6	132-035-360	Bumper, Diaphragm	2	25	545-008-115	Nut. Hex 1/2-13	16
7	135-034-506	Bushing, Plunger	2		545-008-330	Nut, Hex 1/2-13	16
8	165-113-157	Cap, Air Inlet Assembly	1	26	560-001-360	O-Ring	2
	165-113-010	Cap, Air Inlet Assembly	1	27	560-105-360	Seal (O-Ring) (See item 34)	8
9	170-055-115	Capscrew, Hex Hd 1/2-13 X 2.50	16		560-105-363	Seal (O-Ring) (See item 34)	8
	170-055-330	Capscrew, Hex Hd 1/2-13 X 2.50	16		560-105-364	Seal (O-Ring) (See item 34)	8
10	170-060-115	Capscrew, Hex Hd 7/16-14 X 2.00	16		560-105-365	Seal (O-Ring) (See item 34)	8
	170-060-330	Capscrew, Hex Hd 7/16-14 X 2.00	16		720-055-608	Seal (O-Ring) (See item 34)	8
11	170-069-115	Capscrew, Hex Hd 5/16-18 X 1.75	4	28	612-192-157	Plate, Inner Diaphragm Assembly	2
	170-069-330	Capscrew, Hex Hd 5/16-18 X 1.75	4		612-192-010	Plate, Inner Diaphragm Assembly	2
12	171-053-115	Capscrew, Soc Hd 3/8-16 X 2.50 (Stroke Indicator Only)	4	29	612-194-157	Plate, Outer Diaphragm Assembly	2
	171-053-330	Capscrew, Soc Hd 3/8-16 X 2.50 (Stroke Indicator Only)	4		612-194-010	Plate, Outer Diaphragm Assembly	2
	170-006-115	Capscrew, Hex HD 3/8-16 X 1.00	4		612-194-110	Plate, Outer Diaphragm Assembly	2
	170-006-330	Capscrew, Hex HD 3/8-16 X 1.00	4		612-194-112	Plate, Outer Diaphragm Assembly	2
13	171-059-115	Capscrew, Soc Hd 7/16-14 X 1.25	8	30	620-020-115	Plunger, Actuator	2
	171-059-330	Capscrew, Soc Hd 7/16-14 X 1.25	8	31	675-042-115	Ring, Retaining	2
14	196-164-156	Chamber, Outer	2	32	685-040-120	Rod, Diaphragm	1
	196-164-010	Chamber, Outer	2	33	720-004-360	Seal, Diaphragm Rod	2
	196-164-110	Chamber, Outer	2	34	722-090-360	Seat, Check Ball	4
	196-164-112	Chamber, Outer	2		722-090-363	Seat, Check Ball	4
15	196-165-156	Chamber, Inner	2		722-090-364	Seat, Check Ball	4
	196-165-010	Chamber, Inner	2		722-090-365	Seat, Check Ball	4
16	286-098-604	Diaphragm, Overlay	2		722-090-600	Seat, Check Ball	4
17	286-098-360	Diaphragm	2		722-090-080	Seat, Check Ball (seals required see item 27)	4
	286-098-363	Diaphragm	2		722-090-110	Seat, Check Ball (seals required see item 27)	4
	286-098-354	Diaphragm	2		722-090-150	Seat, Check Ball (seals required see item 27)	4
	286-098-365	Diaphragm	2	35	901-038-115	5/16 Flat Washer	4
18	360-093-379	Gasket, Air Valve	1		901-038-330	5/16 Flat Washer	4
19	360-103-379	Gasket, Pilot Valve	1	36	901-048-115	3/8 Flat Washer (Stroke Indicator Only)	4
20	360-104-379	Gasket, Air Inlet	1		901-048-330	3/8 Flat Washer (Stroke Indicator Only)	4
21	360-105-379	Gasket, Inner Chamber	2	42	530-033-000	Metal Muffler	1
22	518-143-156	Manifold, Suction	1			(for other muffler options see pg. 26)	
	518-143-156E	Manifold, Suction 3" BSPT	1	المعلو			
	518-143-010	Manifold, Suction	1	^^Note	e: Pumps equipped	with these components are not ATEX com	pliant

Air Valve Servicing, Assembly Drawing & Parts List

(Use With Aluminum Centers Only)

**Note: Pumps equipped with this valve assembly are not ATEX compliant

Air Valve Assembly Parts List

ltem	Part Number	Description	Qty
1	031-173-000	Air Valve Assembly	1
1-A	095-109-157	Body, Air Valve	1
1-B	031-139-000	Sleeve and Spool Set	1
1-C	132-029-357	Bumper	2
1-D	560-020-360	O-Ring	10
1-E	165-127-157	Cap, End	2
1-F	170-032-330	Hex Head Capscrew 1/4-20 x .75	8
1-G	530-028-550`	Muffler	1
1-H	165-096-551	Muffler Cap	1
1-J	706-026-330	Machine Screw	4

Air Distribution Valve Servicing

To service the air valve first shut off the compressed air, bleed pressure from the pump, and disconnect the air supply line from the pump.

Step #1: See COMPOSITE REPAIR PARTS DRAWING.

Using a 9/16" wrench or socket, remove the four hex capscrews (items 12). Remove the air valve assembly from the pump.

Remove and inspect gasket (item 18) for cracks or damage. Replace gasket if needed.

Step #2: Disassembly of the air valve.

Using a 7/16" wrench or socket, remove the eight hex capscrews (items 1-F) that

fasten the end caps to the valve body. Next remove the two end caps (items 1-E). Inspect the two o-rings (items 1-D) on each end cap for damage or wear. Replace the o-rings as needed.

Remove the bumpers (items 1-C). Inspect the bumpers for damage or wear. Replace the bumpers as needed.

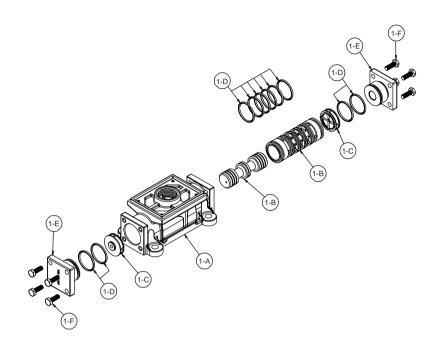
Remove the spool (part of item 1-B) from the sleeve. Be careful not to scratch or damage the outer diameter of the spool. Wipe spool with a soft cloth and inspect for scratches or wear.

Inspect the inner diameter of the sleeve (part of item 1-B) for dirt, scratches, or other contaminants. Remove the sleeve if needed and replace with a new sleeve and spool set (item 1-B). Step #3: Reassembly of the air valve.

Install one bumper (item 1-C) and one end cap (item 1-E), with two o-rings (items 1-D), and fasten with four hex capscrews (items 1-F) to the valve body (item 1-A).

Remove the new sleeve an spool set (item 1-B) from the plastic bag. Carefully remove the spool from the sleeve. Install the six o-rings (item 1-D) into the six grooves on the sleeve. Apply a light coating of grease to the o-rings before installing the sleeve into the valve body (item 1-A), align the slots in the sleeve with the slots in the valve body. Insert the spool into the sleeve. Be careful not to scratch or damage the spool during installation. Carefully insert the sleeve into the bumper and end cap (with o-rings) and fasten with the remaining hex capscrews.

Fasten the air valve assembly (item 1) and gasket to the pump.Connect the compressed air line to the pump. The pump is now ready for operation.



MIMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

Air Valve Servicing, Assembly Drawing & Parts List

Air Distribution Valve Servicing

To service the air valve first shut off the compressed air, bleed pressure from the pump, and disconnect the air supply line from the pump.

Step #1: See COMPOSITE REPAIR PARTS DRAWING.

Using a 9/16" wrench or socket, remove the four hex capscrews (items 12). Remove the air valve assembly from the pump.

Remove and inspect gasket (item 18) for cracks or damage. Replace gasket if needed.

Step #2: Disassembly of the air valve.

Using a 7/16" wrench or socket, remove the eight hex capscrews (items 1-F) that

fasten the end caps to the valve body. Next remove the two end caps (items 1-E). Inspect the two o-rings (items 1-D) on each end cap for damage or wear. Replace the bumpers as needed.

Remove the bumpers (items 1-C). Inspect the bumpers for damage or wear. Replace the bumpers as needed.

Remove the spool (part of item 1-B) from the sleeve. Be careful not to scratch or damage the outer diameter of the spool. Wipe spool with a soft cloth and inspect for scratches or wear.

Inspect the inner diameter of the sleeve (part of item 1-B) for dirt, scratches, or other contaminants. Remove the sleeve if needed and replace with a new sleeve and spool set (item 1-B).

Air Valve Assembly Parts List (Use w/Aluminum centers only)

ltem	Part Number	Description	Qty
1	031-183-000	Air Valve Assembly	1
1-A	095-109-157	Body, Air Valve	1
1-B	031-139-000	Sleeve and Spool Set	1
1-C	132-029-357	Bumper	2
1-D	560-020-360	O-Ring	10
1-E	165-127-157	Cap, End	2
1-F	170-032-330	Hex Head Capscrew 1/4-20 x .75	8

Air Valve Assembly Parts List (Use w/Cast Iron centers only)

ltem	Part Number	Description	Qty
1	031-179-000	Air Valve Assembly	1
1-A	095-109-110	Body, Air Valve	1
1-B	031-139-000	Sleeve and Spool Set	1
1-C	132-029-357	Bumper	2
1-D	560-020-379	O-Ring	10
1-E	165-127-110	Cap, End	2
1-F	170-032-115	Hex Head Capscrew 1/4-20 x .75	8

Step #3: Reassembly of the air valve.

Install one bumper (item 1-C) and one end cap (item 1-E), with two o-rings (items 1-D), and fasten with four hex capscrews (items 1-F) to the valve body (item 1-A).

Remove the new sleeve an spool set (item 1-B) from the plastic bag. Carefully remove the spool from the sleeve. Install the six o-rings (item 1-D) into the six grooves on the sleeve. Apply a light coating of grease to the o-rings before installing the sleeve into the valve body (item 1-A), align the slots in the sleeve with the slots in the valve body. Insert the spool into the sleeve. Be careful not to scratch or damage the spool during installation. Carefully insert the sleeve into the bumper and end cap (with o-rings) and fasten with the remaining hex capscrews.

Fasten the air valve assembly (item 1) and gasket to the pump.Connect the compressed air line to the pump. The pump is now ready for operation.

A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

Air Valve with Stroke Indicator Assembly Drawing, Parts List

AIR VALVE ASSEMBLY PARTS LIST 1-В O-INING or Piped Exhaust: 031-147-000 Air Valve Assembly 1 NOTE: CHECK GAP AFTER ASSEMBLY TO INSURE COMPLETE INSTALLATION OF RETAINING RING .297

**Note: Pumps equipped with this valve assembly are not ATEX compliant

ITEM	PART NUMBER	DESCRIPTION	QTY
1	031-146-000	Air Valve Assembly	1
1-A	031-143-000	Sleeve and Spool Set	1
1-B	095-094-551	Body, Air Valve	1
1-C	132-029-552	Bumper	2
1-D	165-096-551	Cap, Muffler	1
1-E	165-098-147	Cap, End	2
1-F	530-028-550	Muffler	1
1-G	560-020-360	O-Ring	8
1-H	675-044-115	Ring, Retaining	2
1-J	710-015-115	Screw, Self Tapping	4
1-K	210-008-330	Clip, Safety	1
1-M	560-001-360	O-Ring	2

For Pumps with Alternate Mesh, Sound Dampening Mufflers

1 (includes all items on 031-146-000 minus 1-D, 1-F, & 1-J).

AIR DISTRIBUTION VALVE WITH STROKE INDICATOR OPTION SERVICING

To service the air valve first shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump.

Step #1: See COMPOSITE REPAIR PARTS DRAWING.

Using a 5/16" Allen wrench, remove the four hex socket capscrews (item 12) and four flat washers (item 38). Remove the air valve assembly from the pump.

Remove and inspect gasket (item 18) for cracks or damage. Replace gasket if needed.

Step #2: Disassembly of the air valve.

To access the internal air valve components first remove the two retaining rings (item 1-H) from each end of the air valve assembly using clip ring pliers.

Next remove the two end caps (item 1-E). Inspect the o-ring (items 1-G) and 1-M) for cuts or wear. Replace the o-rings if necessary.

Remove the two bumpers (item 1-C). Inspect the bumpers for cut, wear or abrasion. Replace if necessary.

Remove the spool (part of item 1-A) from the sleeve. Be careful not to scratch or damage the outer diameter of the spool. Wipe spool with a soft cloth and inspect for scratches or wear.

Inspect the inner diameter of the sleeve (part of item 1-A) for dirt, scratches, or other contaminants. Remove the sleeve if needed and replace with a new sleeve and spool set (item 1-A).

Step #3: Re-assembly of the air valve.

Install one bumper (item 1-C) and one end cap (item 1-E) with o-rings (item 1-G and 1-M) into one end of the air valve body (item 1-B). Install one retaining ring (item 1-H), into the groove on the same end. Insert the safety clip (item 1-K) through the smaller unthreaded hole in the endcap.

Remove the new sleeve and spool set (item 1-A) from the plastic bag. Carefully remove the spool from the sleeve. Install the six o-rings (item 1-G) into the six grooves on the sleeve. Apply a light coating of grease to the o-rings before installing the sleeve into the valve body (item 1-B). Align the slots in the sleeve with the slots in the valve body. Insert the spool into the sleeve. Be careful not to scratch or damage the spool during installation. Push the spool in until the pin touches the safety clip on the opposite end.

Install the remaining bumper, end cap with o-rings and retaining ring.

Fasten the air valve assembly (item 1) and gasket (item 18) to the pump.

Connect the compressed air line to the pump. Remove the safety clip. The pump is now ready for operation.

MIMPORTANT

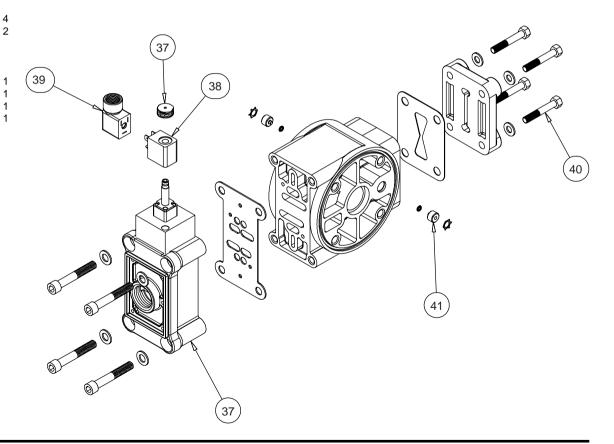
Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

**Solenoid Shifted Air Valve Drawing

**Note: Pumps equipped with Integral Solenoid Valves are not ATEX compliant

SOLENOID SHIFTED AIR VALVE PARTS LIST


(Includes all items used on Composite Repair Parts List except as shown)

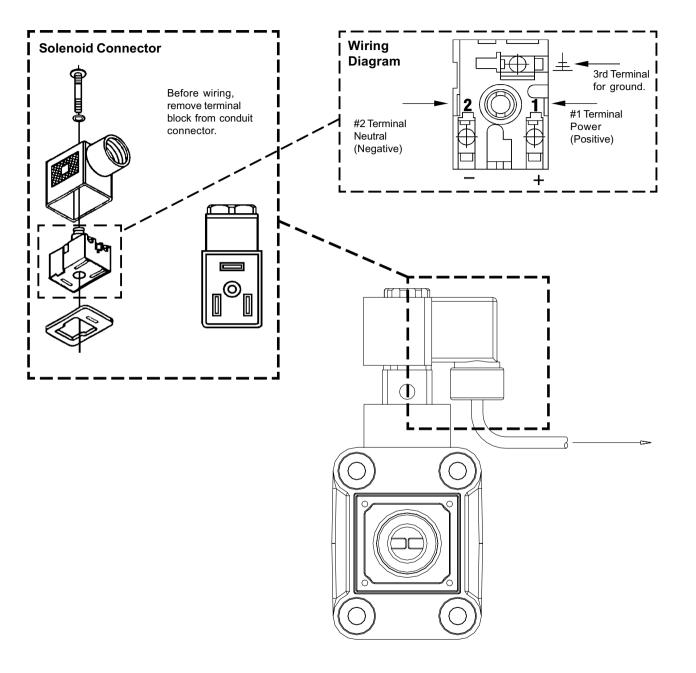
ITEM	PART NUMBER	DESCRIPTION	QTY
37	893-097-000	Solenoid Valve, NEMA4	1
38	219-001-000	Solenoid Coil, 24VDC	1
	219-004-000	Solenoid Coil, 24VAC/12VDC	1
	219-002-000	Solenoid Coil, 120VAC	1
	219-003-000	Solenoid Coil, 240VAC	1
39	241-001-000	Connector, conduit	1
	241-003-000	Conduit Connector with	1
		Suppression Diode (DC Only)	
40	170-029-330	Capscrew, Hex HD 5/16-18 x 1.50	4
41	618-051-150	Plug	2

For Explosion Proof Solenoid Valve

(Connector not required for explosion proof coil; coil is integral with valve)

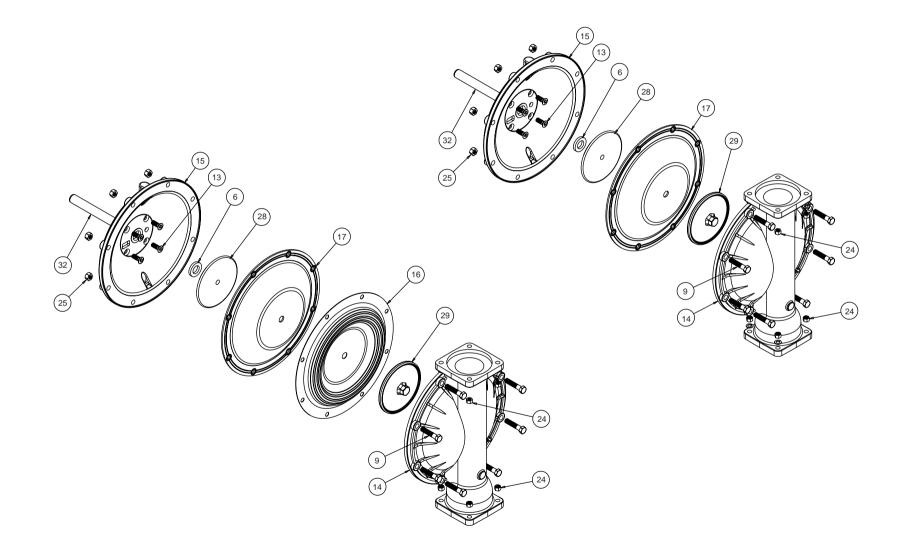
37	893-098-001	Solenoid Valve, NEMA 7/9, 24VDC 1	
	893-098-002	Solenoid Valve, NEMA 7/9, 24VAC/12VDC 1	
	893-098-003	Solenoid Valve, NEMA 7/9, 120VAC 1	
	893-098-004	Solenoid Valve, NEMA 7/9, 220VAC 1	

SOLENOID SHIFTED AIR DISTRIBUTION VALVE OPTION


The solenoid shifted, air distribution valve option utilizes electrical signals to precisely control your pump's speed. The solenoid coil is connected to a customer - supplied control. Compressed air provides the pumping power, while electrical signals control pump speed (pumping rate).

OPERATION

The Solenoid Shifted pump has a solenoid operated, air distribution valve in place of the standard pump's pilot operated, air distribution valve. Where a pilot valve is normally utilized to cycle the pump's air distribution valve, an electric solenoid is utilized. As the solenoid is powered, one of the pump's air chambers is pressurized while the other chamber is exhausted. When electric power is turned off, the solenoid shifts and the pressurized chamber is exhausted while the other chamber is pressurized. By alternately applying and removing power to the solenoid, the pump cycles much like a standard pump, with one exception. This option provides a way to precisely control and monitor pump speed.


BEFORE INSTALLATION

Before wiring the solenoid, make certain it is compatible with your system voltage.

Diaphragm Service Drawing, with Overlay

Diaphragm Service Drawing, Non-Overlay

DIAPHRAGM SERVICING

To service the diaphragms first shut off the suction, then shut off the discharge lines to the pump. Shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining liquid from the pump.

Step #1: See the pump assembly drawing, and the diaphragm servicing illustration.

Using a 9/16" wrench or socket, remove the 16 capscrews (item 10), and hex nuts that fasten the manifolds (items 22 & 23) to the outer chambers (item 14).

Step #2: Removing the outer chambers.

Using a 11/16" and a 5/8" wrench or socket, remove the 16 capscrews (items 9), and hex nuts that fasten the outer chambers, diaphragms, and inner chambers (items 15) together.

Step #3: Removing the diaphragm assemblies.

Use a 1¹/₁₆" (27mm) wrench or six pointed socket to remove the diaphragm assemblies (outer plate, diaphragm, and inner plate) from the diaphragm rod (item 32) by turning counterclockwise.

NOTE: To uninstall the diaphragm plates from the diaphragm, hold the inner diaphragm plate using one of two methods:

Preferred Method: Place the assembled plates and diaphragm in a large vise, gripping on the exterior cast diameter of the inner diaphragm plate (see the drawing at far right). Alternate Method: When a larger vise is not available, insert a 1/4 - 20UNC hex capscrew or setscrew (standard hardware) into the tapped hole in the inner diaphragm plate. Insert the assembled plates and diaphragm into a vise with the stud from the outer plate and the 1/4 - 20 fastener loosely between the jaws of the vise (see illustration at right).

Use a $1^{1}/_{16}$ " wrench or socket to remove the outer diaphragm plate (item 29) by turning counterclockwise. Inspect the diaphragm (item 17) for cuts, punctures, abrasive wear or chemical attack. Replace the diaphragms if necessary.

Step #4: Installing the diaphragms.

Push the threaded stud of the outer diaphragm plate through the center hole of the diaphragm. Thread the inner plate clockwise onto the stud. Use one of the two methods for holding the inner diaphragm plate that was described in prior note in step #3. Use a torque wrench to tighten the diaphragm assembly together to 50 ft. lbs. (67.79 Newton meters). Allow a minimum of 15 minutes to elapse after torquing, then re-torque the assembly to compensate for stress relaxation in the clamped assembly.

Step #5: Installing the diaphragm assemblies to the pump.

Make sure the bumper (item 6) is installed over the diaphragm rod.

Thread the stud of the one diaphragm assembly clockwise into the tapped hole at the end of the diaphragm rod (item 32) until the inner diaphragm plate is flush to the end of the rod. Insert rod into pump. Align the bolt holes in the diaphragm with the bolt pattern in the inner chamber (item 15).

Fasten the outer chamber (item 14) to the pump, using the capscrews (items 9), and hex nuts.

On the opposite side of the pump, pull the diaphragm rod out as far as possible. Make sure the bumper (item 6) is installed over the diaphragm rod.

Thread the stud of the remaining diaphragm assembly clockwise into the tapped hole at the end of the diaphragm rod (item 32) as far as possible and still allow for alignment of the bolt holes in the diaphragm with the bolt pattern in the inner chamber (item 15).

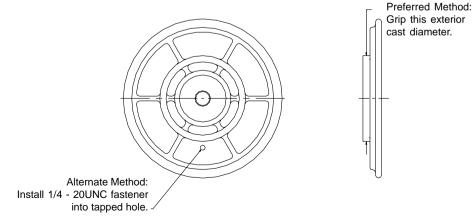
Fasten the remaining outer chamber (item 14) to the pump, using the capscrews (items 9), and hex nuts.

Step #6: Re-install the manifolds to the pump, using the capscrews (items 10), hex nuts and flat washers.

A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.


The pump is now ready to be re-installed, connected and returned to operation.

OVERLAY DIAPHRAGM SERVICING

The overlay diaphragm (item 16) is designed to fit over the exterior of the standard TPE diaphragm (item 17).

The molded directional arrows on the overlay diaphragm must point vertically.

Follow the same procedures described for the standard diaphragm for removal and installation.

ACTUATOR PLUNGER SERVICING

To service the actuator plunger first shut off the compressed air supply, bleed the pressure from the pump, and disconnect the air supply line from the pump.

Step #1: See PUMP ASSEMBLY DRAWING.

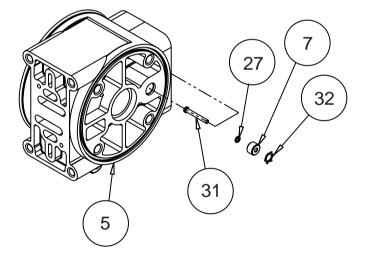
Using a 1/2" wrench or socket, remove the four capscrews (items 11). Remove the air inlet cap (item 8) and air inlet gasket (item 20). The pilot valve assembly (item 4) can now be removed.

Step #2: Inspect the actuator plungers.

See ILLUSTRATION AT RIGHT.

The actuator plungers (items 30) can be reached through the pilot valve cavity in the intermediate assembly (item 5).

Remove the plungers (item 30) from the bushings (item 7) in each end of the cavity. Inspect the installed o-ring (items 26) for cuts and/or wear. Replace the o-rings if necessary. Apply a light coating of grease to each o-ring and re-install the plungers in to the bushings. Push the plungers in as far as they will go.


To remove the bushings (item 7), first remove the retaining rings (item 31) by using a flat screwdriver. **NOTE**: It is recommended that new retaining rings be installed. **Step #3:** Re-install the pilot valve assembly into the intermediate assembly.

Be careful to align the ends of the stem between the plungers when inserting the stem of the pilot valve into the cavity of the intermediate.

Re-install the gasket (item 20), air inlet cap (item 8) and capscrews (item 11).

Connect the air supply to the pump. The pump is now ready for operation.

ACTUATOR PLUNGER SERVICING

Real control of the state of th

A IMPORTANT

Read these instructions completely, before installation and start-up. It is the responsibility of the purchaser to retain

this manual for reference. Failure to comply with the recommendations stated in this manual will damage the pump, and void factory warranty.

CHECK VALVE SERVICING

Before servicing the check valve components, first shut off the suction line and then the discharge line to the pump. Next, shut off the compressed air supply, bleed air pressure from the pump, and disconnect the air supply line from the pump. Drain any remaining fluid from the pump. The pump can now be removed for service.

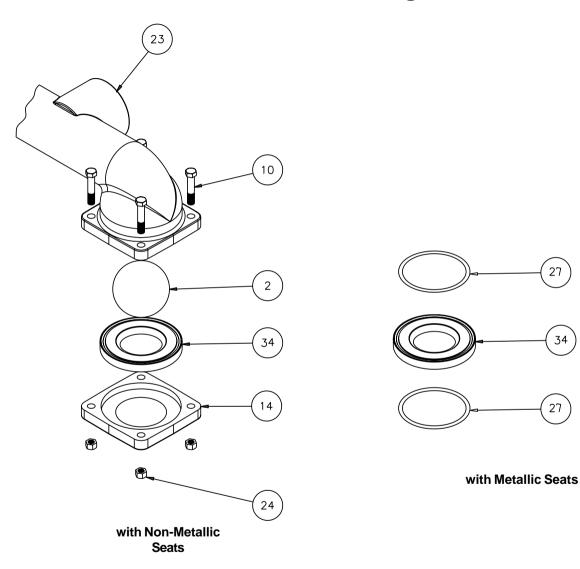
To access the check valve components, remove the manifold (item 23 or item 22 not shown). Use a 9/16" wrench or socket to remove the fasteners. Once the manifold is removed, the check valve components can be seen.

Inspect the check balls (items 2) for wear, abrasion, or cuts on the spherical surface. The check valve seats (item 34) should be inspected for cuts, abrasive wear, or embedded material on the surfaces of both the external and internal chambers. The spherical surface of the check balls must seat flush to the surface of the check valve seats for the pump to operate to peak efficiency. Replace any worn or damaged parts as necessary.

Re-assemble the check valve components. The seat should fit into the counter bore of the outer chamber.

The pump can now be reassembled, reconnected and returned to operation.

METALLIC SEATS


Two o-rings (or conductive PTFE seals) (item 27) are required for metallic seats.

Check Valve Drawing

27

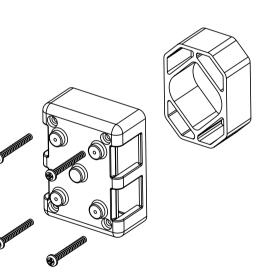
.34

27

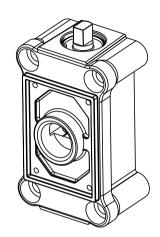
****Optional Muffler Configurations, Drawing**

**Note the pump is built with a metal muffler for static electric dissipation, to meet ATEX requirements. The options shown on this page are <u>not</u> ATEX compliant.

**Configuration A


530-028-550 Encapsulated Muffler uses (1) 165-096-551 Cap and (4) 710-015-115 Self Tapping Screws (Non-metallic valves), or (4) 706-026-330 Machine Screws (Aluminum valves) to hold it in place.

**Configuration B


530-010-000 Mesh Muffler screws directly into the Air Valve Body. This muffler is equipped with a metal element.

**Configuration C

530-027-000 Sound Dampening Muffler screws directly into the Air Valve body. This muffler is equipped with a porous plastic element.

Configuration A

Configuration B and C

PUMPING HAZARDOUS LIQUIDS

When a diaphragm fails, the pumped liquid or fumes enter the air end of the pump. Fumes are exhausted into the surrounding environment. When pumping hazardous or toxic materials, the exhaust air must be piped to an appropriate area for safe disposal. See illustration #1 at right.

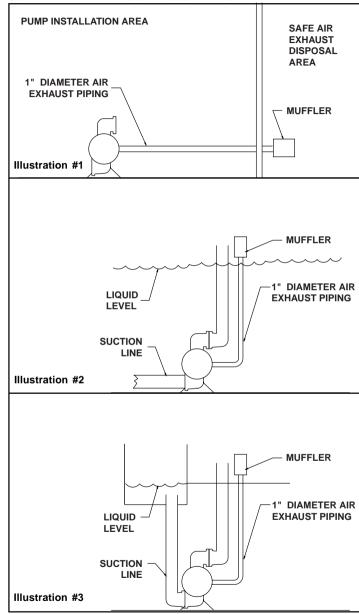
This pump can be submerged if the pump materials of construction are compatible with the liquid being pumped. The air exhaust must be piped above the liquid level. See illustration #2 at right. Piping used for the air exhaust must not be smaller than 1" (2.54 cm) diameter. Reducing the pipe size will restrict air flow and reduce pump performance. When the pumped product source is at a higher level than the pump (flooded suction condition), pipe the exhaust higher than the product source to prevent siphoning spills. See illustration #3 at right.

CONVERTING THE PUMP FOR PIPING THE EXHAUST AIR

The following steps are necessary to convert the pump to pipe the exhaust air away from the pump.

Remove the muffler (item 42). The air distribution valve (item 1) has 1" NPT threads for piped exhaust.

IMPORTANT INSTALLATION


NOTE: The manufacturer recommends installing a flexible conductive hose or connection between the pump and any rigid plumbing. This reduces stresses on the molded threads of the air exhaust port. Failure to do so may result in damage to the air distribution valve body.

Any piping or hose connected to the pump's air exhaust port must be conductive and physically supported. Failure to support these connections could also result in damage to the air distribution valve body.

Air Valve Assembly

On ATEX compliant units the pump comes equipped with a standard metal muffler

CONVERTED EXHAUST ILLUSTRATION

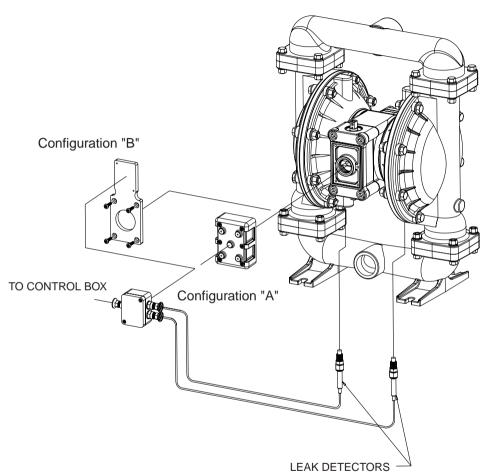
**RuppTech[®] Leak Detection Options, Drawing

**Note: Pumps equipped with these options are <u>not</u> ATEX compliant.

RuppTech® Electronic Leak Detector

Kit 032-037-000	100VAC	50Hz
	or 110-120VAC	50/60Hz
	or 220-240VAC	50/60Hz
Kit 032-045-000	12-32VDC	

Configuration A


To be used with the Encapsulated muffler option. You will need to mount the terminal box directly to the muffler cap on the air valve using the (2) 710-014-330 self tapping screws. Then insert the leak detectors into the bottom port in the inner chambers.

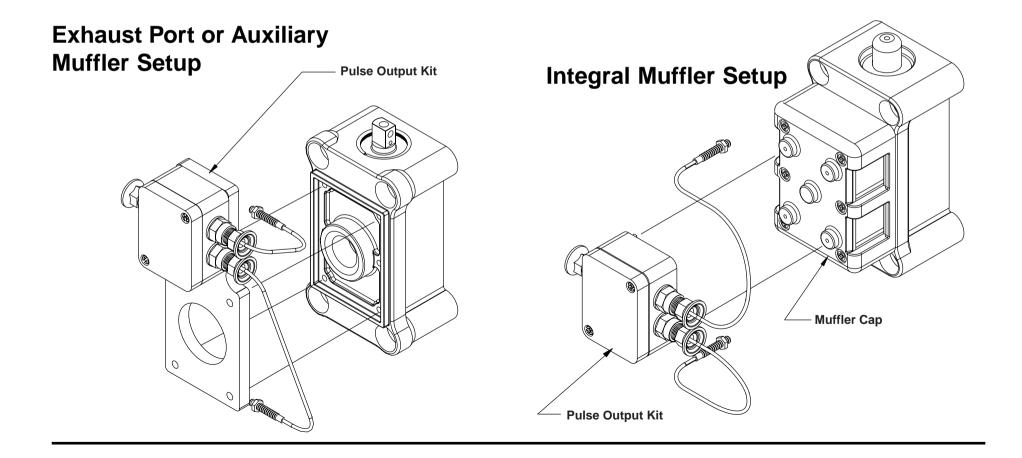
Configuration B

To be used with either of the muffler options or if your exhaust is piped away. You will need to mount the terminal box to the 612-185-552 mounting plate using the (2) 710-014-330 self tapping screws. Then mount the mounting plate directly to the air valve body using the (4) 710-009-115 self tapping screws. Then insert the leak detectors into the bottom port in the inner chambers.

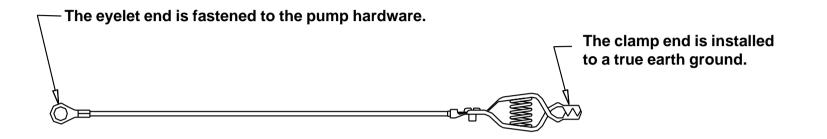
Mechanical Leak Detector

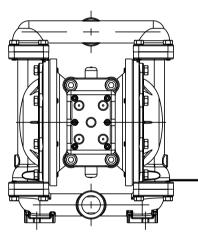
Kit 031-023-110 Insert the leak detectors into the bottom part in the inner chambers.

**RuppTech® Pulse Output Kit Drawing & Options


**Note: Pumps equipped with Pulse Output Kits are not ATEX compliant.

RuppTech® PULSE OUTPUT KIT OPTION


This pump can be fitted with a Pulse Output Kit. This converts the mechanical strokes of the pump to an electrical signal which interfaces with the RuppTech® Stroke Counter/ Batch Controller or user control devices such as a PLC.


The Pulse Output Kits mount directly onto the Muffler Cap on the Air Distribution Valve Assembly or onto the Air Distribution Valve Assembly when the threaded exhaust port or an auxiliary muffler is being used.

See the individual kits listed on the Pump Repair Parts List for further information.

Grounding The Pump

This 8 foot long (244 centimeters) Ground Strap, part number 920-025-000, can be ordered as a service part.

To reduce the risk of static electrical sparking, this pump must be grounded. Check the local electrical code for detailed grounding instruction and the type of equipment required.

Take action to prevent static sparking. Fire or explosion can result, especially when handling flammable liquids. The pump, piping, valves, containers or other miscellaneous equipment must be grounded.